博彩公司-真人在线博彩公司大全_百家乐园首选去澳_全讯网赢足一世 (中国)·官方网站

網(wǎng)站頁面已加載完成

由于您當(dāng)前的瀏覽器版本過低,存在安全隱患。建議您盡快更新,以便獲取更好的體驗。推薦使用最新版Chrome、Firefox、Opera、Edge

Chrome

Firefox

Opera

Edge

ENG

當(dāng)前位置: 首頁 · 學(xué)術(shù)交流 · 正文

學(xué)術(shù)交流

【學(xué)術(shù)報告】研究生靈犀學(xué)術(shù)殿堂第193期之Arthur Gretton報告會通知

發(fā)布時間:2017年07月04日 來源:研工部 點(diǎn)擊數(shù):

全校師生:

我校定于2017年7月5日舉辦研究生靈犀學(xué)術(shù)殿堂——Arthur Gretton報告會,現(xiàn)將有關(guān)事項通知如下:

1.報告會簡介

報告人:Arthur Gretton

時 間:2017年7月5日(星期三) 上午9:00(開始時間)

地 點(diǎn): 長安校區(qū) 89院之間報告廳

主 題: Learning Interpretable Features to Compare Distributions

內(nèi)容簡介:I will present adaptive two-sample tests with optimized testing power and interpretable features. These will be based on the maximum mean discrepancy (MMD), a difference in the expectations of features under the two distributions being tested. Useful features are defined as being those which contribute a large divergence between distributions with high confidence. These interpretable tests can further be used in benchmarking and troubleshooting generative models, in a goodness-of-fit setting. For instance, we may detect subtle differences in the distribution of model outputs and real hand-written digits which humans are unable to find (for instance, small imbalances in the proportions of certain digits, or minor distortions that are implausible in normal handwriting).

2.歡迎各學(xué)院師生前來聽報告。報告會期間請關(guān)閉手機(jī)或?qū)⑹謾C(jī)調(diào)至靜音模式。

黨委研究生工作部

電子信息學(xué)院

2017年6月30日

報告人簡介

Associate Professor of the Gatsby Computational Neuroscience Unit from the part of the Centre for Computational Statistics and Machine Learning at UCL. His research focus on using kernel methods to reveal properties and relations in data. A first application is in measuring distances between probability distributions. These distances can be used to determine strength of dependence, for example in measuring how strongly two bodies of text in different languages are related; testing for similarities in two datasets, which can be used in attribute matching for databases (that is, automatically finding which fields of two databases correspond); and testing for conditional dependence, which is useful in detecting redundant variables that carry no additional predictive information, given the variables already observed. I am also working on applications of kernel methods to inference in graphical models, where the relations between variables are learned directly from training data.

百家乐视频挖坑| 百家乐官网英皇娱乐场开户注册| 网络赌博游戏| 百家乐官网2号死机| 大赢家百家乐娱乐| 240线法杨公风水| 太阳城百家乐官网怎么出千 | 六合彩开奖历史记录| CEO百家乐官网的玩法技巧和规则| 大发888亚洲游戏平台| 天猫百家乐官网娱乐城| 利记娱乐场| 博彩百家乐的玩法技巧和规则| 百家乐官网桌布| 大发888 无法进入网页| 网络百家乐官网开户网| 金彩娱乐城| 大发888信誉| 伟易博百家乐官网娱乐城| 百家乐官网开发公司| 大发888出纳柜台| 澳门百家乐游戏皇冠网| 太阳城百家乐官网怎样开户| 现金网开户送彩金| 真人百家乐园| 百家乐官网娱乐平台代理佣金| bet365娱乐城官网| 百家乐tt赌场娱乐网规则| 皇室百家乐官网的玩法技巧和规则 | 超级老虎机系统| 百家乐玩法及技巧| 真人百家乐官网开户须知| 大发888帐号注册| 公海百家乐的玩法技巧和规则 | 开花财国际| 百家乐网站那个诚信好| 百家乐赌场代理荐| 百家乐赌博出千| 最好的百家乐官网游戏平台1| 皇冠国际现金投注| 什么百家乐官网九宫三路|